SIT-LOCK® 13 - Self-Centering

SIT-LOCK®13 is very close to the standard type SIT-LOCK® 9, but it is manufactured in a longer execution. It is made of two

tapered rings and a locking nut.

Installation

Carefully clean contact surfaces of shaft and hub. Then lightly oil both surfaces with standard mineral oil. Position the SIT-LOCK® in the machined bore of the hub. Insert the shaft. Gradually and uniformly tighten the locking nut to the tightening torque (Ms).

Note: once the tightening torque is reached, do no tighten the locking nut anymore.

Do not use lubricant like "Molykote" or molybdenum disulfide based oils.

Removal

Loosen the lock nut until the SIT-LOCK® is completely released.

Note: Disassembling the SIT-LOCK® 13 may be difficult due to its particular taper angle. Therefore, if torque is sufficient, it is recommended to use SIT-LOCK® 9, which is easier to be disassembled.

Dimensions [mm]				Performances		Pressure [N/mm²]			
d x D	D ₁	Н	В	M⊤ [Nm]	Fax [kN]	p _w	p _n	Nut	Ms [Nm]
14 x 25	32	17	29	90	15	143	80	KM4	90
15 x 25	32	17	29	100	15	133	80	KM4	90
16 x 25	32	17	29	80	12	94	60	KM4	70
17 x 25	32	18	31	113	12	103	70	KM5	90
18 x 30	38	18	31	200	25	183	110	KM5	190
19 x 30	38	18	31	170	20	142	90	KM5	150
20 x 30	38	18	31	130	15	90	60	KM5	110
22 x 35	45	22	35	180	18	95	60	KM6	130
24 x 35	45	22	35	270	26	117	80	KM6	230
25 x 35	45	22	35	200	20	84	60	KM6	170
28 x 40	52	22	35	460	40	157	110	KM7	390
30 x 40	52	22	35	300	24	93	70	KM7	240
32 x 45	58	28	42	420	31	98	70	KM8	320
35 x 45	58	28	42	460	31	77	60	KM8	320
40 x 50	65	28	44	640	37	88	70	KM9	440
45 x 55	70	28	45	760	40	73	60	KM10	550
50 x 60	75	28	46	930	44	72	60	KM11	660
55 x 65	80	28	46	1.130	47	71	60	KM12	800
60 x 70	85	28	52	1.500	59	82	70	KM13	1050

Maximum allowable roughness	
Rt 16 µm	
Maximum recommended tolerance	
shaft h 8 - hub H 8	

M_S	Screw tightening torque	Nm
M_T	Transmissible torque moment	Nm
F_{ax}	Transmissible axial load	N
p_{w}	Shaft pressure	N/mm ²
p_n	Hub pressure	N/mm ²