Elastomerstern

Der Elastomerstern ist aus speziellem Polyurethan gefertigt, das große Vorteile gegenüber marktüblichen Standardpolyurethanen aufweist. Es ist sehr gut alterungs- und hydrolysebeständig (daher auch für Einsatz in tropischen Klimaten geeignet) und außerdem ermüdungsfrei und abriebbeständig. Es hat hervorragende Dämpfungseigenschaften und eine gute Beständigkeit

gegenüber den meisten Chemikalien, Säuren, Ölen und Ozon. Sonderausführung zur Erzielung spezieller Eigenschaften hinsichlich der Einsatztemperaturen oder spezieller chemischer Einflüsse sind lieferbar.

			Sta	andard Elastome	ersterne
Härte	Farbe	Werkstoff	zulässige Ter [°C		Anwendungen
(Shore)			dauerhaft Spitze		
92 Sh A	Gelb	Polyurethan	- 40 bis + 90	- 50 bis + 120	mittlere Leistungen bei den meisten industriellen Anwendungen
98 Sh A	Rot	Polyurethan	- 30 bis + 90	- 40 bis + 120	hohe Momente, geringe Winkelabweichungen, hohe Drehsteifigkeit
64 Sh D	Grün	Polyurethan	- 30 bis + 110	- 30 bis + 130	Dämpfungselemente in Verbrennungskraftmaschinen

			Elastomer	sterne für Sonde	eranwendungen
Härte	Farbe	Werkstoff	zulässige Ter [°C	•	Anwendungen
(Shore)			dauerhaft	Spitze	· · · · · · · · · · · · · · · · · · ·
94 Sh A-T	Orange	Polyurethan	- 50 bis + 110	- 60 bis + 130	Verbrennungskraftmaschinen / hoch dynamische Anwendungen / hohe Dämpfung
64 Sh D-H	Grün	Hytrel	- 50 bis + 110	- 60 bis + 150	Sonderanwendungen / hohe Drehsteifigkeit / hohe Temperaturen
PA	Weiß	Polyurethan	- 20 bis + 110	- 30 bis + 150	hohe Drehsteifigkeit / hohe Temperaturen / gute Beständigkeit

TRASCO® Kupplungsauslegung nach DIN 740/2

TRASCO® Kupplungen werden nach DIN 740/2 ausgelegt. Die Auswahl muß so erfolgen, das das max. übertragbare Drehmoment im Betrieb niemals überschritten wird.

Die Auswahl muß alle nachfolgend aufgelisteten Bedingungen berücksichtigen.

1) Ermittlung des Nennmoments

Das Nennmoment der Kupplung muß größer oder gleich sein wie das Nennmoment des Antriebs x Sicherheitsfaktor für die Temperatur. $T_{KN} \ge T_N \cdot S_A$ [Nm]

 $T_{N} = 9550 \frac{P_{N}}{n}$ [Nm] Zur Beachtung:

Hier ist P_N die Nennleistung des Motors in kW.

2) Ermittlung des max. Moments

Das max. Moment der Kupplung muß größer oder gleich sein wie das Anlaufmoment Ts x Sicherheitsfaktoren S_{θ} . S_z . S_u wobei S_u jeweils der größere Wert der treibenden oder getriebenen Seite ist.

$$T_{Kmax} \ge T_S \cdot S_\theta \cdot S_7 \cdot S_u$$
 [Nm]

3) Ermittlung des Moments bei Lastumkehr

Bei Anwendungen mit Lastumkehr muß berücksichtigt werden:

$$T_{kw} \ge T_w \cdot S_a$$
 [Nm]

darin ist Tkw = Umkehrmoment (Wechseldrehmoment), das die Kupplung übertragen kann, und Tw = Wechseldrehmoment des

Bei Antrieben mit starken Drehmomentstößen wie z.B. Kolbenkompressoren oder Verbrennungsmaschinen sollten diese besonders berücksichtigt werden, um eine korrekte Funktion der Kupplung zu gewährleisten. Bitte fordern Sie unsere Beratung an.

Stoßfaktor	r

Stoßbelastung	Su
leicht	1,4
mittel	1,5
schwer	1,8

Temperaturfaktor

T (°C)	-30°C / +30°C	+40°C	+60°C	+80°C
$S_{\scriptscriptstyle{ heta}}$	1	1,2	1,4	1,8

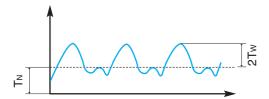
Anlauffaktor

Anläufe/h	0÷100	101÷200	201÷400	401÷800
Sz	1	1,2	1,4	1,6

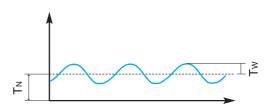
Überprüfung der Welle – Nabe Verbindung

Die Welle - Nabe Verbindung muß in jedem Falle vom Anwender überprüft werden. Wichtig ist, daß das max. auftretende Drehmoment des Antriebs kleiner ist als das von der Welle - Nabe Verbindung übertragbare Drehmoment.

Bei einer Paßfederverbindung muß die Festigkeit des Nabenwerkstoffs daraufhin überprüft werden, ob er die von der Paßfeder übertragene Kraft übertragen kann.


T_{KN}	übertragbares Nenndrehmoment	Nm
T_{Kmax}	max. übertragbares Drehmoment	Nm
T_{KW}	übertragbares Wechseldrehmoment	Nm
T_N	Nennmoment der Antriebsmaschine	Nm
T_S	Spitzendrehmoment der Antriebsmaschine	Nm
T_W	Wechseldrehmoment der Antriebsmaschine	Nm

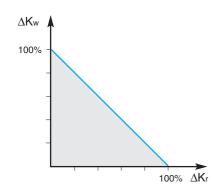
Temperaturfaktor Anlauffaktor S_{Z} S_{ij} Anlauffaktor Nennleistung der Arbeitsmaschine kW Drehzahl min-1



Art der Belastung

wechselnd

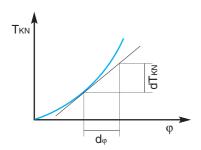
harmonisch



Lageabweichungen

Туре	ΔK _{aP} [mm]	ΔK _{aS} [mm]	ΔK _r [mm]	ΔK _w [°]	
19/24	1,2	-	0,20	1,30	
24/32	1,4	1,1	0,22	1,30	
28/38	1,5	1,2	0,25	1,30	
38/45	1,8	1,4	0,28	1,30	
42/55	2,0	1,6	0,32	1,30	
48/60	2,1	1,7	0,36	1,30	
55/70	2,2	1,8	0,38	1,30	
65/75	2,6	2,0	0,42	1,30	
75/90	3,0	2,4	0,48	1,30	
90/100	3,4	2,8	0,50	1,30	
100/110	3,8	3,0	0,52	1,30	
110/125	4,2	3,2	0,55	1,30	
125/145	4,6	3,4	0,60	1,30	

n=1500 min-1


Die Tabellenwerte für radiale und Winkelabweichungen müssen korrigiert werden, wenn beide zusammen vorliegen. Die Summe der Quotienten der tatsächlichen Abweichungen (Index A) zu den zulässigen Tabellenwerten muß kleiner oder gleich 1 sein.

$$\frac{\Delta K_{rA}}{\Delta K_r} + \frac{\Delta K_{wA}}{\Delta K_w} \leq 1$$

ΔK_{aP}	max. zul. axiale Abweichung Typ "P"	mm
ΔK_{aS}	max. zul. axiale Abweichung Typ "S"	mm
ΔK_r	max. zul. radiale Abweichung	mm
ΔK_{W}	max. zul. Winkelabweichung	0

Dynamische Torsionssteifigkeit

Dynamische Torsionssteifigkeit

Die dynamische Torsionssteifigkeit C_{Tdyn} ist die erste Ableitung der Funktion des Nennmomentes einer Kupplungshälfte über dem Verdrehwinkel gegenüber der zweiten Kupplungshälfte. Generell ist dieser Wert C_{Tdyn} größer als C_T und ist abhängig von der Belastungsart der Kupplung.

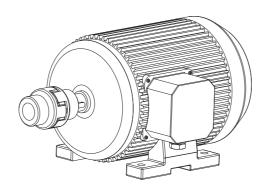
TRASCO.

Technische Leistungsdaten

Die Leistungsdaten in der Tabelle gelten für alle TRASCO® Ausführungen in Verbindung mit dem jeweiligen Elastomerstern bei korrekter Kupplungsauslegung.

Bei speziellen Einsatzbedingungen wie z.B. hoher chemischer Beanspruchung sind Elastomersterne aus Sondermaterialien lieferbar. Bitte wenden Sie sich an unsere Anwendungstechnik.

				Elasto	merste	ern - 92	2 Shore	A – C	ELB						
Toohnise	sho Daton		Туре												
Technische Daten			19/24	24/32	28/38	38/45	42/55	48/60	55/70	65/75	75/90	90/100	100*	110*	125*
	Tĸn	[Nm]	10	35	95	190	265	310	410	625	1280	2400	3300	4800	6650
Moment	T _{Kmax}	[Nm]	20	70	190	380	530	620	820	1250	2560	4800	6600	9600	13300
	Tĸw	[Nm]	2,7	9	25	49	69	81	107	163	333	624	858	1248	1729
max. Drehzahl	n (v=30m/s)	[min ⁻¹]	14000	10600	8500	7100	6000	5600	4750	4250	3550	2800	2500	2240	2000
max. Dienzam	n (v=40m/s)	[min ⁻¹]	19000	14000	11800	9500	8000	7100	6300	5600	4750	3750	3350	3000	2650
	CTdin (1 TKN)	[Nm/rad]	1280	4860	10900	21050	23740	36700	50720	97130	113320	190090	253080	311610	474960
dyn.	CTdin (0,75 TKN)	[Nm/rad]	1050	3980	8940	17260	19470	30090	41590	79650	92920	155870	207530	255520	389390
Torsionssteifigkeit	CTdin (0,5 TKN)	[Nm/rad]	800	3010	6760	13050	14720	22750	31450	60220	70260	117860	156910	193200	294410
	CTdin (0,25 TKN)	[Nm/rad]	470	1790	4010	7740	8730	13490	18640	35700	41650	69860	93010	114520	174510
Torsionswinkel	φ (Tĸn)	(°)						•	3,2°						
TOTSIOTISWITKET	ф (Тктах)	(°)							5°						
Dämpfungsfaktor	Ψ	(-)							0,80						
Resonanzfaktor	VR	(-)							7,90)					


^{*= 95} Sh A

		El	astom	erster	n - 98 S	Sh A -	ROT						
Technico	che Daten		Туре										
Technise	Tooliinoone Baton				28/38	38/45	42/55	48/60	55/70	65/75	75/90	90/100	
	Tĸn	[Nm]	17	60	160	325	450	525	680	950	1950	3600	
Moment	T _{Kmax}	[Nm]	34	120	320	650	900	1050	1250	1900	3900	7200	
	Tĸw	[Nm]	4,4	16	42	85	117	137	178	245	500	936	
max. Drehzahl	n (v=30m/s)	[min ⁻¹]	14000	10600	8500	7100	6000	5600	4750	4250	3550	2800	
IIIax. Dielizaili	n (v=40m/s)	[min-1]	19000	14000	11800	9500	8000	7100	6300	5600	4750	3750	
	CTdin (1 TKN)	[Nm/rad]	2920	9930	26770	48570	54500	65290	94970	129510	197500	312200	
dyn.	CTdin (0,75 TKN)	[Nm/rad]	2390	8140	21950	39830	44690	53540	77880	106200	161950	256000	
Torsionssteifigkeit	CTdin (0,5 TKN)	[Nm/rad]	1810	6160	16600	30110	33790	40480	58880	80300	122450	193560	
	CTdin (0,25 TKN)	[Nm/rad]	1070	3650	9840	17850	20030	24000	34900	47600	72580	114730	
Torsionswinkel	ф (Тки)	(°)					3	,2°					
TOTSIOTISWITKET	ф (Тктах)	(°)						5°					
Dämpfungsfaktor	Ψ	(-)					0	,80					
Resonazfaktor	VR	(-)					7	,90					

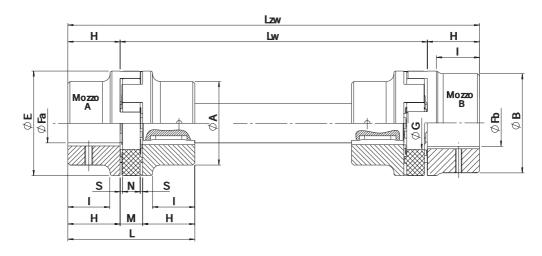
		Ela	stome	erstern	- 64 S	h D - (RÜN						
Technico	che Daten		Туре										
Technise	ne Daten		19/24	24/32	28/38	38/45	42/55	48/60	55/70	65/75	75/90	90/100	
	Tĸn	[Nm]	21	75	200	405	560	655	825	1175	2410	4500	
Moment	T _{Kmax}	[Nm]	42	150	400	810	1120	1310	1650	2350	4820	9000	
	Tĸw	[Nm]	5,5	19,5	52	105	145	170	215	305	625	1170	
max. Drehzahl	n (v=30m/s)	[min ⁻¹]	14000	10600	8500	7100	6000	5600	4750	4250	3550	2800	
max. Dienzani	n (v=40m/s)	[min-1]	19000	14000	11800	9500	8000	7100	6300	5600	4750	3750	
	CTdin (1 TKN)	[Nm/rad]	5350	15110	27520	70150	79860	95510	107920	151090	248220	674520	
dyn.	CTdin (0,75 TKN)	[Nm/rad]	4390	12390	22570	57520	65490	78320	88500	123900	203540	553110	
Torsionssteifigkeit	CTdin (0,5 TKN)	[Nm/rad]	3320	9370	17060	43490	49520	59220	66910	93680	153900	418200	
	CTdin (0,25 TKN)	[Nm/rad]	1970	5550	10120	25780	29350	35100	39660	55530	91220	247890	
Torsionswinkel	ф (Тки)	(°)					2	.,5°					
TOTOTOTIOWITHOU	ф (Тктах)	(°)					3	,6°					
Dämpfungsfaktor	Ψ	(-)					0	,75					
Resonazfaktor	VR	(-)					8	,50				·	

TRASCO® Kupplungen für Normmotoren nach IEC standards (Elastomerstern 92 Shore A)

_	3000 [1/min]					150 [1/m				100 [1/mi				75 [1/m				x l nm]
Туре	P _N [kW]	T _N [Nm]	Туре	K	Pn [kW]	Tn [Nm]	Туре	K	Pn [kW]	T _N [Nm]	Туре	К	Pn [kW]	T _N [Nm]	Туре	K	2 polig	4 - 6 - 8 polig
80	0,75	2,5	19/24	9,2	0,55	3,7		6,2	0,37	3,9		5,8	0,18	2,5	19/24	9,2	10	x40
80	1,1	3,7		6,2	0,75	5,1	19/24	4,5	0,55	5,8	19/24	3,9	0,25	3,5		6,5	13.	X40
90 S	1,5	5		4,6	1,1	7,5	10,21	3	0,75	8		2,8	0,37	5,3		4,3	24:	x50
90 L	2,2	7,4		3,1	1,5	10		2,3	1,1	12		6,6	0,55	7,9		2,9	24.	X30
100 L	3	9,8	24/32	8,1	2,2	15	24/32	5,3	1,5	15	24/32	5,3	0,75	11	24/32	7,2		
100 L				0,1	3	20		4	1,5	10		5,0	1,1	16		5	28:	x60
112 M	4	13		6,1	4	27		2,9	2,2	22		3,6	1,5	21		3,8		
132 S	5,5	18		12,7	5,5	36		6,3	3	30	28/38	7,6	2,2	30		7,6	38x80	
.02 0	7,5	25	28/38	9,2	0,0		28/38					.,.	,_		28/38			
132 M			20/00	7.5	7,5	49	20/00	4,6	4	40		5,7	3	40	20,00	5,7		NOO .
					,-			,-	5,5	55		4,1						
160 M	11	36	38/45	12,5	11	72		6,2	7,5	74	38/45	6	4	74 38/45 100	38/45	8,3		
	15	49		9,1			38/45						5,5			6	42x	110
160 L	18,5	60		7,5	15	98		4,5	11	108		4,1	7,5		4,5			
180 M	22	71	42/55	8,7	18,5	121	42/55	5,1			42/55				42/55		48x	110
180 L					22	144		4,3	15	148		4,1	11	145		4,2		
200 L	30	97		6,3	30	196		3,1	18,5	181		3,4	15	198		3,1	55x	110
	37	120							22	215		2,8						
225 S					37	240	48/60	3					18,5	244		2,9	55x110	60x140
225 M	45	145		4,2	45	292		2,4	30	293		2,4	22	290		2,4		
250 M	55	177	48/60	4	55	356	55/70	2,4	37	361	55/70	2,3	30	392	65	2,6	60x140	65x140
280 S	75	241		3,5	75	484	75/90	5,1	45	438	75	5,7	37	483	75	5,1		75x140
280 M 315 S	90	289 353	55/70	2,9	90	581 707		4,3 3,5	55 75	535 727	75/90	4,6 3,4	45 55	587 712		4,2 3,5		
	132	423		5,9	132	849	75/90		90	873	75/90	2,8	75	971	75/90	6,2	65x140	
315 M	160	513	75/90	4,8	160	1030		2,9 5,9	110	1070		5,7	90	1170		5,2		80x170
315 L	200	641		3,9	200	1290	90/100	4,7	132	1280	90	4,7	110	1420	90	4,2		
	250	801		3,1	200	1230		4,7	160	1550		3.9	132	1710	90/100	3,5		
355 L	230	001		٥, ١	250 1610	90/100	3,7	200	1930	90/100	3,9	160	2070	90/100	2,9	75x140	95x170	
000 E	315	1010		6	315	2020	30,100	3	250	2420	100	2,5	200	2580	100	2,3	707170	90X17U
	355	1140	90/100	5,3	355	2280		2,6	250	L-12U	100	2,5	200	2300		2,3		
400 L	400	1280		4,7	400	2560	100	2,3	315	3040	100		250	3220	100	1,8	80x170	110x210
	700	1200		7,1	1 700	2000		2,0										

P_N	Nennleistung der Antriebsmaschine	kW
TN	Nenndrehmoment der Antriebsmaschine	Nm
K	Sicherheitsfaktor	
d x l	Abmessungen des Wellenendes	mm

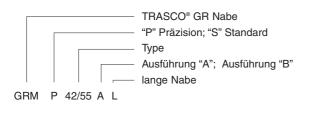
TRASCO*

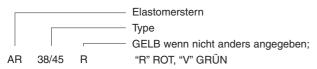

Ausführung "GRL" mit Zwischenwelle

Diese Ausführung ermöglicht es zwei Wellen mit großem Abstand mittels zweier TRASCO® Kupplungen und einer Zwischenwelle (Länge Lw) nach Erfordernissen des Kunden zu verbinden.

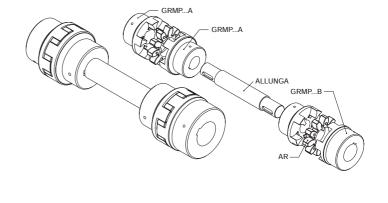
Durch den Einsatz von zwei Elastomersternen weist diese

Ausführung eine hohe Dämpfung auf und erlaubt den Ausgleich großer radialer Lageabweichungen.


Die Naben sind aus Grauguß, während die Wellen aus Stahl sind. Je nach Anwendung können selbstverständlich auch andere Werkstoffe verwendet werden.



Туре	Fa [mm]	Fb [mm]	E [mm]	A [mm]	B [mm]	H [mm] Ausführung			L [mm]		М	S	N	l [mm] Ausführung				G
						A-B	AL	BL	A-B	AL-BL	[mm]	[mm]	[mm]	А	В	AL	BL	[mm]
24/32	9 - 24	11 - 32	55	40	55	30	50	60	78	128	18	2	14	24	-	44	-	27
28/38	9 - 28	11 - 38	65	48	65	35	60	80	90	160	20	2,5	15	28	-	53	-	30
38/45	11 - 38	13 - 45	80	66	80	45	80	110	114	214	24	3	18	37	-	72	-	38
42/55	11 - 42	13 - 55	95	75	95	50	110	110	126	246	26	3	20	40	-	100	-	46
48/60	13 - 48	13 - 60	105	85	105	56	110	140	140	278	28	3,5	21	45	-	99	-	51
55/70	16 - 55	16 - 70	120	98	120	65	110	140	160	280	30	4	22	52	-	97	-	60
65/75	16 - 65	16 -75	135	115	135	75	140	140	185	315	35	4,5	26	61	-	126	-	68
75/90	16 - 75	16 - 90	160	135	160	85	140	170	210	350	40	5	30	69	-	124	-	80
90/100	21 - 90	21 - 100	200	160	180	100	170	210	245	425	45	5,5	34	81	81	151	191	100
100/110	46 - 115	-	225	180	-	110	-	-	270	-	50	6	38	89	-	-	-	113
110/125	56 - 125	-	255	200	-	120	-	-	295	-	55	6,5	42	96	-	-	-	127
125/145	56 - 145	-	290	230	-	140	-	-	340	-	60	7	46	112	-	-	-	147


Bohrungsdurchmesser gültig für Ausführung "P"

Bestellbezeichnung

Wellenlänge auf Anfrage.

